61 research outputs found

    Semi-supervised Segmentation Fusion of Multi-spectral and Aerial Images

    Full text link
    A Semi-supervised Segmentation Fusion algorithm is proposed using consensus and distributed learning. The aim of Unsupervised Segmentation Fusion (USF) is to achieve a consensus among different segmentation outputs obtained from different segmentation algorithms by computing an approximate solution to the NP problem with less computational complexity. Semi-supervision is incorporated in USF using a new algorithm called Semi-supervised Segmentation Fusion (SSSF). In SSSF, side information about the co-occurrence of pixels in the same or different segments is formulated as the constraints of a convex optimization problem. The results of the experiments employed on artificial and real-world benchmark multi-spectral and aerial images show that the proposed algorithms perform better than the individual state-of-the art segmentation algorithms.Comment: A version of the manuscript was published in ICPR 201

    Fine-grained Optimization of Deep Neural Networks

    Full text link
    In recent studies, several asymptotic upper bounds on generalization errors on deep neural networks (DNNs) are theoretically derived. These bounds are functions of several norms of weights of the DNNs, such as the Frobenius and spectral norms, and they are computed for weights grouped according to either input and output channels of the DNNs. In this work, we conjecture that if we can impose multiple constraints on weights of DNNs to upper bound the norms of the weights, and train the DNNs with these weights, then we can attain empirical generalization errors closer to the derived theoretical bounds, and improve accuracy of the DNNs. To this end, we pose two problems. First, we aim to obtain weights whose different norms are all upper bounded by a constant number, e.g. 1.0. To achieve these bounds, we propose a two-stage renormalization procedure; (i) normalization of weights according to different norms used in the bounds, and (ii) reparameterization of the normalized weights to set a constant and finite upper bound of their norms. In the second problem, we consider training DNNs with these renormalized weights. To this end, we first propose a strategy to construct joint spaces (manifolds) of weights according to different constraints in DNNs. Next, we propose a fine-grained SGD algorithm (FG-SGD) for optimization on the weight manifolds to train DNNs with assurance of convergence to minima. Experimental results show that image classification accuracy of baseline DNNs can be boosted using FG-SGD on collections of manifolds identified by multiple constraints

    A New Hole Density as a Stability Measure for Boron Fullerenes

    Full text link
    We investigate the stability of boron fullerene sets B76, B78 and B82. We evaluate the ground state energies, nucleus-independent chemical shift (NICS), the binding energies per atom and the band gap values by means of first-principles methods. We construct our fullerene design by capping of pentagons and hexagons of B60 cage in such a way that the total number of atoms is preserved. In doing so, a new hole density definition is proposed such that each member of a fullerene group has a different hole density which depends on the capping process. Our analysis reveal that each boron fullerene set has its lowest-energy configuration around the same normalized hole density and the most stable cages are found in the fullerene groups which have relatively large difference between the maximum and the minimum hole densities. The result is a new stability measure relating the cage geometry characterized by the hole density to the relative energy.Comment: 6 pages, 3 figures, 2 table

    Linear Discriminant Generative Adversarial Networks

    Full text link
    We develop a novel method for training of GANs for unsupervised and class conditional generation of images, called Linear Discriminant GAN (LD-GAN). The discriminator of an LD-GAN is trained to maximize the linear separability between distributions of hidden representations of generated and targeted samples, while the generator is updated based on the decision hyper-planes computed by performing LDA over the hidden representations. LD-GAN provides a concrete metric of separation capacity for the discriminator, and we experimentally show that it is possible to stabilize the training of LD-GAN simply by calibrating the update frequencies between generators and discriminators in the unsupervised case, without employment of normalization methods and constraints on weights. In the class conditional generation tasks, the proposed method shows improved training stability together with better generalization performance compared to WGAN that employs an auxiliary classifier

    Design of Kernels in Convolutional Neural Networks for Image Classification

    Full text link
    Despite the effectiveness of Convolutional Neural Networks (CNNs) for image classification, our understanding of the relationship between shape of convolution kernels and learned representations is limited. In this work, we explore and employ the relationship between shape of kernels which define Receptive Fields (RFs) in CNNs for learning of feature representations and image classification. For this purpose, we first propose a feature visualization method for visualization of pixel-wise classification score maps of learned features. Motivated by our experimental results, and observations reported in the literature for modeling of visual systems, we propose a novel design of shape of kernels for learning of representations in CNNs. In the experimental results, we achieved a state-of-the-art classification performance compared to a base CNN model [28] by reducing the number of parameters and computational time of the model using the ILSVRC-2012 dataset [24]. The proposed models also outperform the state-of-the-art models employed on the CIFAR-10/100 datasets [12] for image classification. Additionally, we analyzed the robustness of the proposed method to occlusion for classification of partially occluded images compared with the state-of-the-art methods. Our results indicate the effectiveness of the proposed approach. The code is available in github.com/minogame/caffe-qhconv

    Improving Robustness of Feature Representations to Image Deformations using Powered Convolution in CNNs

    Full text link
    In this work, we address the problem of improvement of robustness of feature representations learned using convolutional neural networks (CNNs) to image deformation. We argue that higher moment statistics of feature distributions could be shifted due to image deformations, and the shift leads to degrade of performance and cannot be reduced by ordinary normalization methods as observed in experimental analyses. In order to attenuate this effect, we apply additional non-linearity in CNNs by combining power functions with learnable parameters into convolution operation. In the experiments, we observe that CNNs which employ the proposed method obtain remarkable boost in both the generalization performance and the robustness under various types of deformations using large scale benchmark datasets. For instance, a model equipped with the proposed method obtains 3.3\% performance boost in mAP on Pascal Voc object detection task using deformed images, compared to the reference model, while both models provide the same performance using original images. To the best of our knowledge, this is the first work that studies robustness of deep features learned using CNNs to a wide range of deformations for object recognition and detection

    HyperNetworks with statistical filtering for defending adversarial examples

    Full text link
    Deep learning algorithms have been known to be vulnerable to adversarial perturbations in various tasks such as image classification. This problem was addressed by employing several defense methods for detection and rejection of particular types of attacks. However, training and manipulating networks according to particular defense schemes increases computational complexity of the learning algorithms. In this work, we propose a simple yet effective method to improve robustness of convolutional neural networks (CNNs) to adversarial attacks by using data dependent adaptive convolution kernels. To this end, we propose a new type of HyperNetwork in order to employ statistical properties of input data and features for computation of statistical adaptive maps. Then, we filter convolution weights of CNNs with the learned statistical maps to compute dynamic kernels. Thereby, weights and kernels are collectively optimized for learning of image classification models robust to adversarial attacks without employment of additional target detection and rejection algorithms. We empirically demonstrate that the proposed method enables CNNs to spontaneously defend against different types of attacks, e.g. attacks generated by Gaussian noise, fast gradient sign methods (Goodfellow et al., 2014) and a black-box attack(Narodytska & Kasiviswanathan, 2016)

    Deep Structured Energy-Based Image Inpainting

    Full text link
    In this paper, we propose a structured image inpainting method employing an energy based model. In order to learn structural relationship between patterns observed in images and missing regions of the images, we employ an energy-based structured prediction method. The structural relationship is learned by minimizing an energy function which is defined by a simple convolutional neural network. The experimental results on various benchmark datasets show that our proposed method significantly outperforms the state-of-the-art methods which use Generative Adversarial Networks (GANs). We obtained 497.35 mean squared error (MSE) on the Olivetti face dataset compared to 833.0 MSE provided by the state-of-the-art method. Moreover, we obtained 28.4 dB peak signal to noise ratio (PSNR) on the SVHN dataset and 23.53 dB on the CelebA dataset, compared to 22.3 dB and 21.3 dB, provided by the state-of-the-art methods, respectively. The code is publicly available.Comment: Accepted to 24th International Conference on Pattern Recognition (ICPR 2018). 6 pages, 7 figure

    Improving Head Pose Estimation with a Combined Loss and Bounding Box Margin Adjustment

    Full text link
    We address a problem of estimating pose of a person's head from its RGB image. The employment of CNNs for the problem has contributed to significant improvement in accuracy in recent works. However, we show that the following two methods, despite their simplicity, can attain further improvement: (i) proper adjustment of the margin of bounding box of a detected face, and (ii) choice of loss functions. We show that the integration of these two methods achieve the new state-of-the-art on standard benchmark datasets for in-the-wild head pose estimation.Comment: IEEE International Conference on Automatic Face & Gesture Recognition (FG2019

    Information Potential Auto-Encoders

    Full text link
    In this paper, we suggest a framework to make use of mutual information as a regularization criterion to train Auto-Encoders (AEs). In the proposed framework, AEs are regularized by minimization of the mutual information between input and encoding variables of AEs during the training phase. In order to estimate the entropy of the encoding variables and the mutual information, we propose a non-parametric method. We also give an information theoretic view of Variational AEs (VAEs), which suggests that VAEs can be considered as parametric methods that estimate entropy. Experimental results show that the proposed non-parametric models have more degree of freedom in terms of representation learning of features drawn from complex distributions such as Mixture of Gaussians, compared to methods which estimate entropy using parametric approaches, such as Variational AEs.Comment: Information Theor
    • …
    corecore